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Abstract

In this paper we compare different types of recurrent units in recurrent neural net-
works (RNNs). Especially, we focus on more sophisticated units that implement
a gating mechanism, such as a long short-term memory (LSTM) unit and a re-
cently proposed gated recurrent unit (GRU). We evaluate these recurrent units on
the tasks of polyphonic music modeling and speech signal modeling. Our exper-
iments revealed that these advanced recurrent units are indeed better than more
traditional recurrent units such as tanh units. Also, we found GRU to be compa-
rable to LSTM.

1 Introduction

Recurrent neural networks have recently shown promising results in many machine learning tasks,
especially when input and/or output are of variable length [see, e.g., Graves, 2012]. More recently,
Sutskever et al. [2014] and Bahdanau et al. [2014] reported that recurrent neural networks are able to
perform as well as the existing, well-developed systems on a challenging task of machine translation.

One interesting observation, we make from these recent successes is that almost none of these suc-
cesses were achieved with a vanilla recurrent neural network. Rather, it was a recurrent neural net-
work with sophisticated recurrent hidden units, such as long short-term memory units [Hochreiter
and Schmidhuber, 1997], that was used in those successful applications.

Among those sophisticated recurrent units, in this paper, we are interested in evaluating two closely
related variants. One is a long short-term memory (LSTM) unit, and the other is a gated recurrent
unit (GRU) proposed more recently by Cho et al. [2014]. It is well established in the field that the
LSTM unit works well on sequence-based tasks with long-term dependencies, but the latter has only
recently been introduced and used in the context of machine translation.

In this paper, we evaluate these two units and a more traditional tanh unit on the task of sequence
modeling. We consider three polyphonic music datasets [see, e.g., Boulanger-Lewandowski et al.,
2012] as well as two internal datasets provided by Ubisoft in which each sample is a raw speech
representation.

Based on our experiments, we concluded that by using fixed number of parameters for all models
on some datasets GRU, can outperform LSTM units both in terms of convergence in CPU time and
in terms of parameter updates and generalization.

2 Background: Recurrent Neural Network

A recurrent neural network (RNN) is an extension of a conventional feedforward neural network,
which is able to handle a variable-length sequence input. The RNN handles the variable-length
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sequence by having a recurrent hidden state whose activation at each time is dependent on that of
the previous time.

More formally, given a sequence x = (x1,x2, · · · ,xT ), the RNN updates its recurrent hidden state
ht by

ht =

{
0, t = 0

φ (ht−1,xt) , otherwise
(1)

where φ is a nonlinear function such as composition of a logistic sigmoid with an affine transforma-
tion. Optionally, the RNN may have an output y = (y1, y2, . . . , yT ) which may again be of variable
length.

Traditionally, the update of the recurrent hidden state in Eq. (1) is implemented as

ht = g (Wxt + Uht−1) , (2)

where g is a smooth, bounded function such as a logistic sigmoid function or a hyperbolic tangent
function.

A generative RNN outputs a probability distribution over the next element of the sequence, given
its current state ht, and this generative model can capture a distribution over sequences of vari-
able length by using a special output symbol to represent the end of the sequence. The sequence
probability can be decomposed into

p(x1, . . . , xT ) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xT | x1, . . . , xT−1), (3)

where the last element is a special end-of-sequence value. We model each conditional probability
distribution with

p(xt | x1, . . . , xt−1) =g(ht),

where ht is from Eq. (1). Such generative RNNs are the subject of this paper.

Unfortunately, it has been observed by, e.g., Bengio et al. [1994] that it is difficult to train RNNs
to capture long-term dependencies because the gradients tend to either vanish (most of the time) or
explode (rarely, but with severe effects). This makes gradient-based optimization method struggle,
not just because of the variations in gradient magnitudes but because of the effect of long-term
dependencies is hidden (being exponentially smaller with respect to sequence length) by the effect
of short-term dependencies. There have been two dominant approaches by which many researchers
have tried to reduce the negative impacts of this issue. One such approach is to devise a better
learning algorithm than a simple stochastic gradient descent [see, e.g., Bengio et al., 2013, Pascanu
et al., 2013, Martens and Sutskever, 2011], for example using the very simple clipped gradient, by
which the norm of the gradient vector is clipped, or using second-order methods which may be less
sensitive to the issue if the second derivatives follow the same growth pattern as the first derivatives
(which is not guaranteed to be the case).

The other approach, in which we are more interested in this paper, is to design a more sophisticated
activation function than a usual activation function, consisting of affine transformation followed
by a simple element-wise nonlinearity by using gating units. The earliest attempt in this direction
resulted in an activation function, or a recurrent unit, called a long short-term memory (LSTM)
unit [Hochreiter and Schmidhuber, 1997]. More recently, another type of recurrent unit, to which
we refer as a gated recurrent unit (GRU), was proposed by Cho et al. [2014]. RNNs employing either
of these recurrent units have been shown to perform well in tasks that require capturing long-term
dependencies. Those tasks include, but are not limited to, speech recognition [see, e.g., Graves et al.,
2013] and machine translation [see, e.g., Sutskever et al., 2014, Bahdanau et al., 2014].
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(a) Long Short-Term Memory (b) Gated Recurrent Unit

Figure 1: Illustration of (a) LSTM and (b) gated recurrent units. (a) i, f and o are the input, forget
and output gates, respectively. c and c̃ denote the memory cell and the new memory cell content. (b)
r and z are the reset and update gates, and h and h̃ are the activation and the candidate activation.

3 Gated Recurrent Neural Networks

In this paper, we are interested in evaluating the performance of those recently proposed recurrent
units (LSTM unit and GRU) on sequence modeling. Before the empirical evaluation, we first de-
scribe each of those recurrent units in this section.

3.1 Long Short-Term Memory Unit

The Long Short-Term Memory (LSTM) unit was initially proposed by Hochreiter and Schmidhuber
[1997]. Since then, a number of minor modifications to the original LSTM unit have been made.
We follow the implementation of LSTM as used in Graves [2013].

Unlike to the recurrent unit which simply computes a weighted sum of the input signal and applies
a nonlinear function, each j-th LSTM unit maintains a memory cjt at time t. The output hjt , or the
activation, of the LSTM unit is then

hjt = ojt tanh
(
cjt

)
,

where ojt is an output gate that modulates the amount of memory content exposure. The output gate
is computed by

ojt = σ (Woxt + Uoht−1 + Voct)
j
,

where σ is a logistic sigmoid function. Vo is a diagonal matrix.

The memory cell cjt is updated by partially forgetting the existing memory and adding a new memory
content c̃jt :

cjt = f jt c
j
t−1 + ijt c̃

j
t , (4)

where the new memory content is

c̃jt = tanh (Wcxt + Ucht−1)
j
.

The extent to which the existing memory is forgotten is modulated by a forget gate f jt , and the
degree to which the new memory content is added to the memory cell is modulated by an input gate
ijt . Gates are computed by

f jt =σ (Wfxt + Ufht−1 + Vfct−1)
j
,

ijt =σ (Wixt + Uiht−1 + Vict−1)
j
.

Note that Vf and Vi are diagonal matrices.
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Unlike to the traditional recurrent unit which overwrites its content at each time-step (see Eq. (2)),
an LSTM unit is able to decide whether to keep the existing memory via the introduced gates.
Intuitively, if the LSTM unit detects an important feature from an input sequence at early stage, it
easily carries this information (the existence of the feature) over a long distance, hence, capturing
potential long-distance dependencies.

See Fig. 1 (a) for the graphical illustration.

3.2 Gated Recurrent Unit

A gated recurrent unit (GRU) was proposed by Cho et al. [2014] to make each recurrent unit to
adaptively capture dependencies of different time scales. Similarly to the LSTM unit, the GRU has
gating units that modulate the flow of information inside the unit, however, without having a separate
memory cells.

The activation hjt of the GRU at time t is a linear interpolation between the previous activation hjt−1

and the candidate activation h̃jt :

hjt = (1− zjt )h
j
t−1 + zjt h̃

j
t , (5)

where an update gate zjt decides how much the unit updates its activation, or content. The update
gate is computed by

zjt = σ (Wzxt + Uzht−1)
j
.

This procedure of taking a linear sum between the existing state and the newly computed state is
similar to the LSTM unit. The GRU, however, does not have any mechanism to control the degree
to which its state is exposed, but exposes the whole state each time.

The candidate activation h̃jt is computed similarly to that of the traditional recurrent unit (see Eq. (2))
and as in [Bahdanau et al., 2014],

h̃jt = tanh (Wxt + U (rt � ht−1))
j
,

where rt is a set of reset gates and � is an element-wise multiplication. 1 When off (rjt close to 0),
the reset gate effectively makes the unit act as if it is reading the first symbol of an input sequence,
allowing it to forget the previously computed state.

The reset gate rjt is computed similarly to the update gate:

rjt = σ (Wrxt + Urht−1)
j
.

See Fig. 1 (b) for the graphical illustration of the GRU.

3.3 Discussion

It is easy to notice similarities between the LSTM unit and the GRU from Fig. 1.

The most prominent feature shared between these units is the additive component of their update
from t to t + 1, which is lacking in the traditional recurrent unit. The traditional recurrent unit
always replaces the activation, or the content of a unit with a new value computed from the current
input and the previous hidden state. On the other hand, both LSTM unit and GRU keep the existing
content and add the new content on top of it (see Eqs. (4) and (5)).

1 Note that we use the reset gate in a slightly different way from the original GRU proposed in Cho et al.
[2014]. Originally, the candidate activation was computed by

h̃j
t = tanh (Wxt + rt � (Uht−1))

j ,

where rjt is a reset gate. We found in our preliminary experiments that both of these formulations performed
as well as each other.
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This additive nature has two advantages. First, it is easy for each unit to remember the existence of
a specific feature in the input stream for a long series of steps. Any important feature, decided by
either the forget gate of the LSTM unit or the update gate of the GRU, will not be overwritten but
be maintained as it is.

Second, and perhaps more importantly, this addition effectively creates shortcut paths that bypass
multiple temporal steps. These shortcuts allow the error to be back-propagated easily without too
quickly vanishing (if the gating unit is nearly saturated at 1) as a result of passing through multiple,
bounded nonlinearities, thus reducing the difficulty due to vanishing gradients [Hochreiter, 1991,
Bengio et al., 1994].

These two units however have a number of differences as well. One feature of the LSTM unit that
is missing from the GRU is the controlled exposure of the memory content. In the LSTM unit, the
amount of the memory content that is seen, or used by other units in the network is controlled by the
output gate. On the other hand the GRU exposes its full content without any control.

Another difference is in the location of the input gate, or the corresponding reset gate. The LSTM
unit computes the new memory content without any separate control of the amount of information
flowing from the previous time step. Rather, the LSTM unit controls the amount of the new memory
content being added to the memory cell independently from the forget gate. On the other hand, the
GRU controls the information flow from the previous activation when computing the new, candidate
activation, but does not independently control the amount of the candidate activation being added
(the control is tied via the update gate).

From these similarities and differences alone, it is difficult to conclude which types of gating units
would perform better in general. Although Bahdanau et al. [2014] reported that these two units per-
formed comparably to each other according to their preliminary experiments on machine translation,
it is unclear whether this applies as well to tasks other than machine translation. This motivates us
to conduct more thorough empirical comparison between the LSTM unit and the GRU in this paper.

4 Experiments Setting

4.1 Tasks and Datasets

We compare the LSTM unit, GRU and tanh unit in the task of sequence modeling. Sequence
modeling aims at learning a probability distribution over sequences, as in Eq. (3), by maximizing
the log-likelihood of a model given a set of training sequences:

max
θ

1

N

N∑
n=1

Tn∑
t=1

log p
(
xnt | xn1 , . . . , xnt−1;θ

)
,

where θ is a set of model parameters. More specifically, we evaluate these units in the tasks of
polyphonic music modeling and speech signal modeling.

For the polyphonic music modeling, we use three polyphonic music datasets from [Boulanger-
Lewandowski et al., 2012]: Nottingham, JSB Chorales, MuseData and Piano-midi. These datasets
contain sequences of which each symbol is respectively a 93-, 96-, 105-, and 108-dimensional binary
vector. We use logistic sigmoid function as output units.

We use two internal datasets provided by Ubisoft2 for speech signal modeling. Each sequence is an
one-dimensional raw audio signal, and at each time step, we design a recurrent neural network to
look at 20 consecutive samples to predict the following 10 consecutive samples. We have used two
different versions of the dataset: One with sequences of length 500 (Ubisoft A) and the other with
sequences of length 8, 000 (Ubisoft B). Ubisoft A and Ubisoft B have 7, 230 and 800 sequences
each. We use mixture of Gaussians with 20 components as output layer. 3

2 http://www.ubi.com/
3Our implementation is available at https://github.com/jych/librnn.git
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4.2 Models

For each task, we train three different recurrent neural networks, each having either LSTM units
(LSTM-RNN, see Sec. 3.1), GRUs (GRU-RNN, see Sec. 3.2) or tanh units (tanh-RNN, see Eq. (2)).
As the primary objective of these experiments is to compare all three units fairly, we choose the size
of each model so that each model has approximately the same number of parameters. We intention-
ally made the models to be small enough in order to avoid overfitting which can easily distract the
comparison. This approach of comparing different types of hidden units in neural networks has been
done before, for instance, by Gulcehre et al. [2014]. See Table 1 for the details of the model sizes.

Unit # of Units # of Parameters
Polyphonic music modeling

LSTM 36 ≈ 19.8× 103

GRU 46 ≈ 20.2× 103

tanh 100 ≈ 20.1× 103

Speech signal modeling
LSTM 195 ≈ 169.1× 103

GRU 227 ≈ 168.9× 103

tanh 400 ≈ 168.4× 103

Table 1: The sizes of the models tested in the experiments.

tanh GRU LSTM

Music Datasets

Nottingham train
test

3.22
3.13

2.79
3.23

3.08
3.20

JSB Chorales train
test

8.82
9.10

6.94
8.54

8.15
8.67

MuseData train
test

5.64
6.23

5.06
5.99

5.18
6.23

Piano-midi train
test

5.64
9.03

4.93
8.82

6.49
9.03

Ubisoft Datasets

Ubisoft dataset A train
test

6.29
6.44

2.31
3.59

1.44
2.70

Ubisoft dataset B train
test

7.61
7.62

0.38
0.88

0.80
1.26

Table 2: The average negative log-probabilities of the training and test sets.

We train each model with RMSProp [see, e.g., Hinton, 2012] and use weight noise with standard
deviation fixed to 0.075 [Graves, 2011]. At every update, we rescale the norm of the gradient to 1,
if it is larger than 1 [Pascanu et al., 2013] to prevent exploding gradients. We select a learning rate
(scalar multiplier in RMSProp) to maximize the validation performance, out of 10 randomly chosen
log-uniform candidates sampled from U(−12,−6) [Bergstra and Bengio, 2012]. The validation set
is used for early-stop training as well.

5 Results and Analysis

Table 2 lists all the results from our experiments. In the case of the polyphonic music datasets, the
GRU-RNN outperformed all the others (LSTM-RNN and tanh-RNN) on all the datasets except for
the Nottingham. However, we can see that on these music datasets, all the three models performed
closely to each other.

On the other hand, the RNNs with the gating units (GRU-RNN and LSTM-RNN) clearly outper-
formed the more traditional tanh-RNN on both of the Ubisoft datasets. The LSTM-RNN was best
with the Ubisoft A, and with the Ubisoft B, the GRU-RNN performed best.

In Figs. 2–3, we show the learning curves of the best validation runs. In the case of the music
datasets (Fig. 2), we see that the GRU-RNN makes faster progress in terms of both the number of
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updates and actual CPU time. If we consider the Ubisoft datasets (Fig. 3), it is clear that although the
computational requirement for each update in the tanh-RNN is much smaller than the other models,
it did not make much progress each update and eventually stopped making any progress at much
worse level.

These results clearly indicate the advantages of the gating units over the more traditional recurrent
units. Convergence is often faster, and the final solutions tend to be better. However, our results are
not conclusive in comparing the LSTM and the GRU, which suggests that the choice of the type of
gated recurrent unit may depend heavily on the dataset and corresponding task.

Per epoch

Wall Clock Time (seconds)

(a) Nottingham Dataset (b) MuseData Dataset

Figure 2: Learning curves for training and validation sets of different types of units with respect to
(top) the number of iterations and (bottom) the wall clock time. y-axis corresponds to the negative-
log likelihood of the model shown in log-scale.

6 Conclusion

In this paper we empirically evaluated recurrent neural networks (RNN) with three widely used
recurrent units; (1) a traditional tanh unit, (2) a long short-term memory (LSTM) unit and (3)
a recently proposed gated recurrent unit (GRU). Our evaluation focused on the task of sequence
modeling on a number of datasets including polyphonic music data and raw speech signal data.

The evaluation clearly demonstrated the superiority of the gated units; both the LSTM unit and GRU,
over the traditional tanh unit. This was more evident with the more challenging task of raw speech
signal modeling. However, we could not make concrete conclusion on which of the two gating units
was better.
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Per epoch

Wall Clock Time (seconds)

(a) Ubisoft Dataset A (b) Ubisoft Dataset B

Figure 3: Learning curves for training and validation sets of different types of units with respect to
(top) the number of iterations and (bottom) the wall clock time. x-axis is the number of epochs and
y-axis corresponds to the negative-log likelihood of the model shown in log-scale.

We consider the experiments in this paper as preliminary. In order to understand better how a gated
unit helps learning and to separate out the contribution of each component, for instance gating units
in the LSTM unit or the GRU, of the gating units, more thorough experiments will be required in
the future.
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